相似度
优化器
CS224WLec6~Lec9-GNN
Background
- DeepWalk/Node2vec属于shallow encoding,有如下优缺点:
- 需要O(|V|)的参数量,节点间的embedding不共享,每个node有独立的embedding
- 推导式的(transductive):training时没有的node,不会有embedding
- 没有利用到节点的特征,只利用了graph structure
- 范式:
- encoder生成node embedding,DeepWalk&Node2vec中为一个|V|*D的权重矩阵:
- decoder将node embedding映射回原空间,这里存在隐式的decoder,embedding空间两向量的点积可以表示原空间u,v的相似度:
- 点积相似度:最小化两向量的模以及夹角余弦的乘积
- GNN: deep encoding
- encoder为MLP
- decoder为某种向量相似度
Graph-与图有关的资源
OpenResource
- OGB: The Open Graph Benchmark (OGB) is a collection of realistic, large-scale, and diverse benchmark datasets for machine learning on graphs.
- GraphGym: GraphGym is a platform for designing and evaluating Graph Neural Networks. —> 和pytorch配合
- GraphNets: 配合tensorflow
Class
Papers
- Tutorials and overviews:
- Relational inductive biases and graph networks (Battaglia et al., 2018)
- Representation learning on graphs: Methods and applications (Hamilton et al., 2017)
- Attention-based neighborhood aggregation:
- Graph attention networks (Hoshen, 2017; Velickovic et al., 2018; Liu et al., 2018)
- Embedding entire graphs:
- Graph neural nets with edge embeddings (Battaglia et al., 2016; Gilmer et. al., 2017)
- Embedding entire graphs (Duvenaud et al., 2015; Dai et al., 2016; Li et al., 2018) and graph pooling (Ying et al., 2018, Zhang et al., 2018)
- Graph generation and relational inference (You et al., 2018; Kipf et al., 2018)
- How powerful are graph neural networks(Xu et al., 2017)
- Embedding nodes:
- Varying neighborhood: Jumping knowledge networks (Xu et al., 2018), GeniePath (Liu et al., 2018)
- Position-aware GNN (You et al. 2019)
- Spectral approaches to graph neural networks:
- Spectral graph CNN & ChebNet (Bruna et al., 2015; Defferrard et al., 2016)
- Geometric deep learning (Bronstein et al., 2017; Monti et al., 2017)
- Other GNN techniques:
- Pre-training Graph Neural Networks (Hu et al., 2019)
- GNNExplainer: Generating Explanations for Graph Neural Networks (Ying et al., 2019)
GraphEmbedding-LINE
paper: LINE: Large-scale Information Network Embedding
Intro
- 包含一阶信息(直接相连的两节点的邻近度)和二阶信息(一对顶点的邻近度用临近节点的相似性衡量)的GE学习模型:只用到了一阶邻点
- DeepWalk/node2vec: 基于高阶相似度的GE学习模型
CS224WLec5-Label Propagation for Node Classification[LIP]
CS224WLec4-PageRank
PageRank
- 一个node的重要性由指向它的节点的重要性决定 —> 指向该node的节点数越多,且这些节点重要性越高,则该节点越重要。node j的重要性(传递函数)为:
矩阵形式:
- 随机邻接矩阵M。j有个出链,如果j -> i,则,因此每一列上的值要么为0,要么为,且加和为1,称为列随机矩阵
- rank vector r: 为node j的重要性score,且
- n*1 = n*n * n*1:
,
- PageRank VS RandomWalk: 当random walk到达静态分布状态时满足,即PageRank得到的重要性向量v是random walk的静态分布
- PangRank VS Eigenvector: PageRank得到的重要性向量v是当特征值为1时得到的主特征向量