Background

  • DeepWalk/Node2vec属于shallow encoding,有如下优缺点:
    • 需要O(|V|)的参数量,节点间的embedding不共享,每个node有独立的embedding
    • 推导式的(transductive):training时没有的node,不会有embedding
    • 没有利用到节点的特征,只利用了graph structure
  • 范式:
    • encoder生成node embedding,DeepWalk&Node2vec中为一个|V|*D的权重矩阵:
    • decoder将node embedding映射回原空间,这里存在隐式的decoder,embedding空间两向量的点积可以表示原空间u,v的相似度:
      • 点积相似度:最小化两向量的模以及夹角余弦的乘积
  • GNN: deep encoding
    • encoder为MLP
    • decoder为某种向量相似度
Read more »

OpenResource

  • OGB: The Open Graph Benchmark (OGB) is a collection of realistic, large-scale, and diverse benchmark datasets for machine learning on graphs.
  • GraphGym: GraphGym is a platform for designing and evaluating Graph Neural Networks. —> 和pytorch配合
  • GraphNets: 配合tensorflow

Class

Papers

  • Tutorials and overviews:
    • Relational inductive biases and graph networks (Battaglia et al., 2018)
    • Representation learning on graphs: Methods and applications (Hamilton et al., 2017)
  • Attention-based neighborhood aggregation:
    • Graph attention networks (Hoshen, 2017; Velickovic et al., 2018; Liu et al., 2018)
  • Embedding entire graphs:
    • Graph neural nets with edge embeddings (Battaglia et al., 2016; Gilmer et. al., 2017)
    • Embedding entire graphs (Duvenaud et al., 2015; Dai et al., 2016; Li et al., 2018) and graph pooling (Ying et al., 2018, Zhang et al., 2018)
    • Graph generation and relational inference (You et al., 2018; Kipf et al., 2018)
    • How powerful are graph neural networks(Xu et al., 2017)
  • Embedding nodes:
    • Varying neighborhood: Jumping knowledge networks (Xu et al., 2018), GeniePath (Liu et al., 2018)
    • Position-aware GNN (You et al. 2019)
  • Spectral approaches to graph neural networks:
    • Spectral graph CNN & ChebNet (Bruna et al., 2015; Defferrard et al., 2016)
    • Geometric deep learning (Bronstein et al., 2017; Monti et al., 2017)
  • Other GNN techniques:
    • Pre-training Graph Neural Networks (Hu et al., 2019)
    • GNNExplainer: Generating Explanations for Graph Neural Networks (Ying et al., 2019)

ppt

Semi-supervised binary node classification

  • goal: 知道部分节点的label求其他节点的label
  • main assumption:网络中存在的同质性。同类的node倾向于相互连接,或者聚在一起。
  • framework
    • 初始化
    • 迭代
    • 收敛
  • approaches
    • relational classification
    • iterative classification
    • correct & smooth
  • 以节点二分类为例
Read more »

PageRank

  • 一个node的重要性由指向它的节点的重要性决定 —> 指向该node的节点数越多,且这些节点重要性越高,则该节点越重要。node j的重要性(传递函数)为:
  • 矩阵形式:

    • 随机邻接矩阵M。j有个出链,如果j -> i,则,因此每一列上的值要么为0,要么为,且加和为1,称为列随机矩阵
    • rank vector r: 为node j的重要性score,且
    • n*1 = n*n * n*1:
      ,
  • PageRank VS RandomWalk: 当random walk到达静态分布状态时满足,即PageRank得到的重要性向量v是random walk的静态分布
  • PangRank VS Eigenvector: PageRank得到的重要性向量v是当特征值为1时得到的主特征向量
    Read more »

Basic

  • goal: 为node生成一个embedding
  • 两个要素:encoder/相似度计量方法(encode前后都需要)
  • framework: encoder 生成embedding —> 相似度计量方法决定embedding学习的好坏
  • unsupervised/self-supervised way based on random walks
  • task independent
Read more »